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Abstract: Pseudopotential calculations of the ground state energies of actinium and thorium neutral atoms and 

some of their corresponding cations by using variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) 

methods have been performed. The fluctuation of the local energy that has been obtained is found to be below 2 

a.u. in all cases under study. We also study the dependence of DMC energy on the size of the time step for 

actinium. The available results are quite encouraging for these heavy atoms.   
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I. INTRODUCTION 

 

Quantum Monte Carlo (QMC) method has become a powerful tool in quantum chemistry calculations. One of the 

advantages of the QMC technique is that its computational efforts scales with the number of electrons, ,N  in the system 

as approximately 
3N  which is favorable over other computational many-body methods. Since we are interested in the 

ground state energy of the atoms, the variational Monte Carlo (VMC) and the diffusion Monte Carlo (DMC) will be used. 

On one hand accurate calculations of extremely light atoms using QMC method are performed by a large number of 

researchers [1-3, 4]. On the other hand, for the atoms heavier than Ne, pseudopotentials and all-electron calculations are 

performed by many researchers, e.g., E. Buendia et al. [5] published VMC calculations for atoms up to Ar, L. Wagner and 

L. Mitas [6] extended their QMC calculations to compounds containing transition elements, X. P. Li et al. [7] studied the 

Si atom with Green’s function Monte Carlo. Finally, noble gases atoms up to Xe have been also studied by A. Ma et al. 

[8]. Our trial is to use, for the first time, if not at least it will be one of the first trial, QMC calculations to estimate the 

ground state energy of actinides. 

 The study of chemical systems that contain f-elements is still a particularly challenging branch of computational 

chemistry and very limited dealing with them by QMC method. The difficulties presented by f-elements in quantum 

mechanical calculations arise from the large magnitude of the relativistic effect and the limitation in the electron 

correlation treatment. 

In the present work, we perform QMC calculations for the ground state energies for Ac and Th neutral atoms and 

some of their corresponding cations. To allow the QMC calculations of these heavy atoms, valence-only calculations have 

been performed by using the pseudopotentials since the presence of the inert core electrons introduces a large fluctuation 

in the energies and this reduces the computational efficiency. The basic form of the wave function that we used is the 

Slater-Jastrow wave function which is considered the most common and simplest one. 

In the next section, we outline a brief description of the QMC method. The results are then presented and discussed. 

Atomic units are used throughout this work unless otherwise indicated. 

 

II. COMPUTATIONAL METHODS 

 

Quantum Monte Carlo methods have been extensively described in the literatures [9-10, 11], so we give here a brief 

description of the two methods, the variational and diffusion Monte Carlo methods.  
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The Variational Monte Carlo (VMC) technique depends on the familiar Variational principle for finding the ground 

state energies of quantum mechanical systems. By the variational principle, the expectation value of the ground state 

energy of a many body system of N  particles evaluated with a trial wavefunction T  and is given by 
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which provides an upper bound to the exact ground state energy 0E .                                     

The VMC method rewrites the last integral in the following form: 
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 is the local energy EL of an electronic configuration, and 

2
)(RT is the probability density for the 

configuration R. 

The Metropolis algorithm is used to sample a series of points, iR , from the probability density in the configuration 

space. At each of these points the local energy EL is evaluated [12]. After a sufficient number of evaluations of the local 

energy have been made, the average is taken 
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So the VMC is a simple technique in which the statistical efficiency of the results depends on the whole of the trial 

wavefunction. The better the wavefunction guess, the more efficient the VMC result.  

     The more accurate diffusion Monte Carlo (DMC) method is a stochastic projector method for solving the imaginary 

time many-body Schrödinger equation: 
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where,  is the imaginary time it and TE  is the energy offset. 

Importance sampling with a trial wave function )(RT  is used to improve the statistical accuracy of the simulation 

and this is can be achieved by multiplying Eq. (4) by )(RT and rearranging 
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where, )(),(),( RRRf T   interpreted as a probability density and 
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This equation can be simulated with a random walk having diffusion, a draft, and a branching step and may be written in 

the integral form: 

                                                  dRRfRRGRf ),().;',(),(                                                 (6) 

where, the Green's function );,( ' RRG  is a solution of the same initial equation (5) and can be interpreted as a 

probability of transition from a state R to R'. It is possible to use QMC method to solve the integral in Eq. (6) but the 

difficulty is that the precise form of );',( RRG  is not known. Fortunately the comparison of the Schrödinger 

equation with the diffusion equation gives us a clue about how one might approximate the unknown Green's function.  



International Journal of Mathematics and Physical Sciences Research (IJMPSR) 
Vol. 1, Issue 1, pp: (25-29), Month: October 2013-march 2014, Available at: www.researchpublish.com 

 

Page | 27  
Research Publish Journals 

The evolution during the long time interval can be generated repeating a large number of short time steps . In the 

limit ,0 one can make use of the short time approximation for Green's function [13]: 
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 But due to the fermionic nature of electrons, the wavefunction must have positive and negative parts and this is opposite 

to the assumed nature of   which is a probability distribution. So the fixed-node approximation [14] had been used to 

treat the fermionic antisymmetry which constrains the nodal surface of   to equal that of the antisymmetric trial 

wavefunction .T   

An important characteristic of QMC method is its ability to use arbitrary wavefunction forms. Any wavefunction of 

great functional complexity can be used in QMC, since analytical integration isn’t being done (only calculation of the 

wavefunction, its gradient and Laplacian at several million points distributed in configuration space). In fact, the statistical 

efficiency of the method depends on the quality of the wavefunction; while in the VMC the accuracy of the energy 

estimate depends on the whole on the trial wavefunction, in DMC it depends on the form of its nodal surface, as the DMC 

algorithm gives the lowest energy compatible with the fixed nodal surface. The form of the trial wave function is therefore 

very important; it must be both accurate and easy to evaluate. The simplest and most common wave function used in 

QMC is the Slater-Jastrow wavefunction which consists of a Slater determinant multiplied by the exponential Jastrow 

correlation factor which includes the dynamic correlation among the electrons so it plays a crucial role in treating many-

body systems. The basic functional form of the Slater-Jastrow wavefunction is 
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where, },,{ 21 NrrrR  denote the space coordinate of N electrons, J(R) is the Jastrow factor, nc  are coefficient, and 

)(RDn is a Slater determinant of single particle orbital which usually obtained from Hartree-Fock calculations. 

 

III. RESULTS AND DISSCUSSION 

 

Our purpose in this work is to study the possibility of applying QMC method on actinides. No previous study on the 

performance of this method on actinides has been found in literature. Here we estimate the VMC and DMC ground state 

energies of Ac and Th neutral atoms and some of their charged cations.  All our QMC calculations were performed by 

using Qwalk code [15]. The basic form of the wavefunction that we used consists of a product of Slater determinants for 

spin-up and spin-down electrons multiplied by a Jastrow correlation factor. 

Table 1: Ground state total energies computed within Hartree Fock, EHF, variational Monte Carlo, EVMC, and diffusion 

Monte Carlo, EDMC, for Ac and Th neutral atoms and some of their corresponding cations.   is the root mean square 

fluctuation of the local energy in each method.   All energies are in Hartrees. 

                        EHF                  HF                EVMC            
VMC              EDMC                     DMC                   

Ac                    -28.8731             1.57                -29.0922           1.34               -29.1393             0.76                           

Ac
1
                   -28.9677             1.49                -29.0395          1.13               -29.2563              1.08        

Ac
2
                  -28.6006              1.42                -28.6684           1.11               -28.8463             0.77        

Ac
3
                  -27.9826              1.45               -28.1805            1.48               -28.2255             0.96 

         

Th                   -35.2761             1.67                -35.5958             0.87              -35.6613              0.77 

Th
1
                  -35.0862             1.71               -35.3181             1.18               -35.4926             1.25       

Th
2
                  -34.6128             1.60                -34.8735             0.88              -34.8869             0.86      

Th
3
                  -33.9926             1.55                -34.2401             0.87              -34.2668             0.76 
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The initial orbitals of the trial wavefunction are generated in GAMESS package [16] via spin-restricted open Hartree-

Fock calculations. In the present work we have used CRENBL ECP [17] basis set which eliminates a large core (78 core 

electrons) from the atoms so only the 5f-electrons are treated as valence electrons. We used a target population of 2000 

walkers. In the DMC calculations a time step of 0.0001 Hartree
-1

 was used.  

In table 1 we report our HF, VMC, and DMC calculations for the ground state energy of actinium and thorium neutral 

atoms and from first to third corresponding cations. The fluctuation of the local energy, , for each method are also 

presented. As it can be seen from the table, that the fluctuation of the local energy in case of DMC, ,DMC  is smaller 

than 1 a.u. for both of Ac and Th neutral atoms. Although the HF and VMC are less efficient than DMC, the fluctuation of 

the local energy is found to be below 2 a. u. for all the results that have been obtained. 

 

Table 2: Time step dependence of the diffusion Monte Carlo energy, DMCE , for the Ac atom. 

The last column indicates the values of the time step errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us know study the dependence of the DMC energies on the size of the time step for Ac atom. In table 2 the results 

of our calculations are summarized. We estimated the time step errors, finding them to be -0.0046 H for the smallest time 

step and -0.0575 H in the case of the largest time step. It should be noted that the magnitude of these errors may be not too 

large according to this heavy atom.  
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Model Polynomial

Adj. R-Square 0.94233

Value Standard Error

B Intercept -29.13476 0.00326

B B1 -15.80885 2.13934

B B2 1025.62924 219.50855

 
                    Fig. 1: Time step dependence of the diffusion Monte Carlo (DMC) energies for Ac atom. 

 

  Time step                    DMCE                 Time step 

  (Hartree)
-1

               (Hartree)               error (Hartree)         

    0.00010                     -29.1393                  -0.0046 

    0.00025                     -29.1332                   0.0015 

    0.00050                     -29.1386                  -0.0039 

    0.00100                     -29.1520                  -0.0173 

    0.00150                     -29.1591                  -0.0244 

    0.00200                     -29.1628                  -0.0281 

    0.00400                     -29. 1896                 -0.0549 

    0.00600                     -29.1828                  -0.0481 

    0.00800                     -29.1960                  -0.0613 

    0.01000                     -29.1922                  -0.0575              
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Figure 1 shows a plot of the DMC energies as a function of the time step. As it is apparent from the figure that the relation 

between the DMC energies and the time steps follows a polynomial relation this is related to the presence of the Jastrow 

factor that introduces a polynomial behavior in the energy as a function of the time step. Furthermore, all the DMC 

energies have been extrapolated to zero time step and the extrapolated value has been found to be  -29.13476 0.00326 H. 

 

IV. CONCLUSION 

In conclusion, we have calculated the ground state energies for actinium and thorium neutral atoms and from their 

first to third corresponding cations. Although the simple Slater Jastrow trial wavefunction has been used in all our 

calculations, the results are satisfactory. Moreover, we study the dependence of the DMC energies for actinium atom on 

the size of the time step. We hope that this work will be the starting point for the applications of QMC method on 

actinides.   
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